Redefining Allogeneic CAR Ts Using a Non-Gene Edited Approach

June 11, 2021
This presentation may contain forward-looking statements, within the meaning of applicable securities laws, including the Private Securities Litigation Reform Act of 1995. Forward-looking statements may involve known and unknown risks and uncertainties which might cause actual results, financial condition, performance or achievements of Celyad Oncology to differ materially from those expressed or implied by such forward looking statements. Such risk and uncertainty include statements regarding the clinical activity and safety and tolerability of CYAD-211 and expectations regarding enrollment and the announcement of additional clinical data. A further list and description of these risks, uncertainties and other risks can be found in Celyad Oncology’s U.S. Securities and Exchange Commission (SEC) filings and reports, including in its Annual Report on Form 20-F filed with the SEC on March 24, 2021 and subsequent filings and reports by Celyad Oncology. These forward-looking statements speak only as of the date of publication of this document and Celyad Oncology’s actual results may differ materially from those expressed or implied by these forward-looking statements. Celyad Oncology expressly disclaims any obligation to update any such forward-looking statements in this document to reflect any change in its expectations with regard thereto or any change in events, conditions or circumstances on which any such statement is based, unless required by law or regulation.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Discussant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome & Introductions</td>
<td>Filippo Petti</td>
</tr>
<tr>
<td></td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>shRNA and CYAD-211 Overview</td>
<td>David Gilham, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Chief Scientific Officer</td>
</tr>
<tr>
<td>IMMUNICY-1 Phase 1 Trial – Preliminary Data</td>
<td>Sébastien Anguille, M.D.</td>
</tr>
<tr>
<td></td>
<td>University of Antwerp</td>
</tr>
<tr>
<td>Final Remarks</td>
<td>Charles Morris, M.D.</td>
</tr>
<tr>
<td></td>
<td>Chief Medical Officer</td>
</tr>
<tr>
<td>Q&A</td>
<td>All</td>
</tr>
</tbody>
</table>
David Gilham, Ph.D.
Chief Scientific Officer

shRNA and CYAD-211 Overview
shRNA – Non-gene Editing Technology to Engineer Allogeneic CAR Ts

- Short hairpin RNA (shRNA) interferes with the expression of the T Cell Receptor (TCR) through targeting of the CD3ζ subunit.
Background on CYAD-211

- CYAD-211 is our first allogeneic CAR T candidate using shRNA technology utilizing our All-in-One vector approach
- CYAD-211 co-expresses:
 - CAR – BCMA specific engager
 - Allogeneic technology – single shRNA targeting CD3ζ component of TCR complex
 - Selection marker – truncated cell surface CD34 tag allows for positive cell enrichment during manufacturing

BCMA: B-cell maturation antigen; r/r MM: relapsed/refractory multiple myeloma.
Anti-BCMA CAR T cells with shRNA targeting CD3ζ component exhibited no signs of TCR activation with anti-tumor activity in preclinical models.

No demonstrable evidence of GvHD when CYAD-211 was infused in sub-lethally irradiated NSG mice, the gold standard preclinical model of GvHD, confirming efficient inhibition of alloreactivity.

TCR Knock Down

Anti-Tumor Activity

Graft-versus-Host Disease

BCMA: B-cell maturation antigen; GvHD: Graft-versus-Host Disease; shRNA: short hairpin RNA.
shRNA Knocks Down TCR Expression to Undetectable Levels

Clinical-grade CYAD-211

- CYAD-211 cell bank generated through a single production run using a proportion of a single healthy donor apheresis
- Efficient knock down of cell surface TCR expression to undetectable levels was confirmed in the final CAR T-cell product candidate
shRNA as a Novel Allogeneic Technology for CAR T

Keys to establishing proof-of-concept

- No evidence of GvHD
- Initial clinical activity
- Cell engraftment
Sébastien Anguille, M.D.
University of Antwerp

IMMUNICY-1 Phase 1 Trial
– Preliminary Data
Open-label, Phase 1 dose-escalation trial in r/r multiple myeloma patients

Study Design

• Primary objective:
 • Safety and identification of recommended dose of CYAD-211
• Secondary objective:
 • Clinical anti-tumor activity and CYAD-211 cell expansion, persistence and trafficking
• Dose Escalation:
 • 30×10^6, 100×10^6 and 300×10^6 per infusion
• Preconditioning chemotherapy:
 • Cyclophosphamide: $300 \text{ mg/m}^2 \times 3 \text{ days}$
 • Fludarabine: $30 \text{ mg/m}^2 \times 3 \text{ days}$

Treatment Schedule

Eligibility Criteria

• At least two prior MM treatment regimens
• At least 1 complete cycle of treatment
• At least 1 response to a prior treatment regimen
• Measurable disease as per the IMWG Response Criteria
Patient Demographics and Clinical Characteristics

Patient Background

- Six patients enrolled across first two dose levels
- Three of six patients showed high-risk cytogenetics according to mSMART
- Four of six patients were refractory to last line of therapy
- Heavily pre-treated patients:
 - Median prior lines of therapy: four
 - Five of six patients exposed to all three major MM drug classes:
 - Immunomodulatory drugs (IMiDs), proteasome inhibitors and CD38-directed therapies
CYAD-211 – Preliminary Data Show Favorable Tolerability Profile

- No DLTs, no GvHD and no CAR-T-cell-related encephalopathy syndrome (CRES)
- One cytokine release syndrome (CRS) Grade 1 (fever) reported at dose level 1
- CRS onset was at the time of the first PR onset in patient #01
- One patient experienced an anemia adverse event (Grade 3) and neutropenia (Grade 4) possibly related to CYAD-211

<table>
<thead>
<tr>
<th>AE of interest</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5</th>
<th>All Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE related to CYAD-211</td>
<td>5 (83%)</td>
<td>2 (33%)</td>
<td>1 (17%)</td>
<td>1 (17%)</td>
<td>-</td>
<td>5 (83%)</td>
</tr>
<tr>
<td>CRS ¹</td>
<td>1 (17%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (17%)</td>
</tr>
<tr>
<td>CRES ¹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GvHD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infection ²</td>
<td>1 (17%)</td>
<td>1 (17%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Infusion reaction to CYAD-211</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2. Including bacterial, viral and fungal infections.

AE: Adverse event; GvHD: Graft versus Host Disease; PR: Partial response.
Data from uncleaned database (May 24, 2021).
CYAD-211 – Encouraging Initial Clinical Activity in Allogeneic Setting

Duration of Best Response to Treatment

- Two patients achieved partial response (PR)
- Three additional patients presented with stable disease (SD)

Patient bar stopped at the first documented progression of the disease or * when the patient discontinued follow-up on study prior to disease progression.

Data from uncleaned database (May 24, 2021).

PD: Progressive disease; MR: Marginal response
Positive Cell Kinetic Data

CYAD-211 cell levels detected by PCR-based methods in all patients

Peripheral Blood Lymphocyte Count
CYAD-211 Cell Engraftment

- Engraftment was seen in all three patients at dose level 2 at a similar magnitude.
- Duration and depth of lymphodepletion was variable and may explain differences in engraftment for dose level 1.
 - Patient #03 showed a surprisingly high level of engraftment compared to other dose level 1 patients.
IMMUNICY-1 Preliminary Results – Summary

- Favorable tolerability profile for CYAD-211 was observed at the first two dose-levels (30x10^6 and 100x10^6) across six patients enrolled.
- Two objective responses in conjunction with the current levels of cell engraftment of CYAD-211 are encouraging at these initial dose levels.
- Observed levels of systemic engraftment of CYAD-211 cells with no evidence of GvHD at low cell doses following standard preconditioning are encouraging.
Final Remarks
Advantages of Non-gene Edited Allogeneic CAR Ts using shRNA

Not all allogeneic CAR Ts are created equal

- Less potential tolerability issues due to no genome modification
- Level of gene knockdown can be titrated
- Ability to knockdown multiple targets simultaneously
- All-in-One vector approach (single vector for all elements)
- Minimized cell manipulation
- Shorter manufacturing process

Not all allogeneic CAR Ts are created equal
Even with relatively modest doses of lymphodepleting chemotherapy, there is evidence of a dose dependent increase in cell engraftment.

Engraftment of shRNA-based allogeneic CAR Ts could offer potential key differentiation to cells developed using alternative technologies.
shRNA as a Novel Allogeneic Technology for CAR T

Keys to establishing proof-of-concept after dose level 1 and 2

- ✔ No evidence of GvHD
- ✔ Initial clinical activity
- ✔ Cell engraftment
Next Steps for CYAD-211 IMMUNICY-1 Trial

- Enrollment in dose level 3 (300x10^6 cells per infusion) ongoing
- Additional data from the dose escalation trial are expected during second half 2021
• Safety data, clinical activity and cell kinetic data from IMMUNICY-1 support further development of CYAD-211
• Preliminary data support shRNA as a novel allogeneic platform technology to develop future product candidates
• Additional next-generation shRNA-based preclinical allogeneic CAR T candidates currently under development
• shRNA potentially provides many benefits over gene editing technologies for the development of allogeneic CAR T candidates
European Hematology Association Virtual Congress 2021

Redefining Allogeneic CAR Ts Using a Non-Gene Edited Approach

June 11, 2021
Redefining Allogeneic CAR Ts Using a Non-Gene Edited Approach

June 11, 2021