First Results from the Dose Escalation Segment of the Phase I Clinical Study Evaluating CYAD-02, an Optimized Non-Gene-Edited Engineered NKG2D CAR T-cell Product, in Relapsed or Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients

Dries Deeren 1, Johan Maertens 2, Tara L. Lin 3, Yves Beguin 4, Benjamin Demoulin 5, Martina Fontaine 5, Panagiotis A. Sotiropoulou 5, Erik Alcantar-Orozco 5, Eytan Breman 5, Marie-Sophie Dheur 5, Nathalie Braun 5, Caroline Lonzé 5, David E. Gilham 5, Anne Flament 5, Frédéric L. Lehmann 5

BACKGROUND

- Effective therapeutic options for patients with relapsed refractory (r/r) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are lacking.
- Chimeric antigen receptor (CAR) T cell therapy is delivering major clinical responses in r/r malignancies but those are not validated CAR T cell targets in AML/MDS yet.
- CYAD-02 is based on an autologous NKG2D CAR product, CYAD-01, which has shown some initial signs of transient clinical activity as a monotherapy in r/r AML/MDS patients (ASH 2019 – poster 3538). However, this activity was not enhanced by modifying the manufacturing process (OptimAb) or when combined with pre-conditioning chemotherapy (poster 993).
- CYAD-02 is a next-generation autologous CAR T cell product based on the fusion of the NKG2D receptor with CD3ζ. NKG2D binds eight different stress induced ligands (MIC/A, ULBP/L) that are over-expressed by a large variety of malignancies including AML/MDS.
- Since preclinical studies have shown that the transient upregulation of NKG2D ligands MIC/M and MICA can activate CAR T-cells might decrease in vivo persistence of the cells (Brem et al., Frontiers Immunol. 2018). CYAD-02 uses a non-genetic editing approach (the expression of MICA and MICB with the aim to increase persistence and potency of the NKG2D CAR T-cells).
- Co-expressing a MICA/B short hairpin (shRNA) with the NKG2D CAR and using the OptimAb pre-conditioning process results in a T-cell product which displays improved anti-tumor activity in preclinical models (ASH 2019 – poster 3931).
- The Phase 1 CYCLE-1 (NCT04167696) study was initiated to evaluate this next-generation CYAD-02 product post a pre-conditioning chemotherapy.
- The dose levels and schedule closely follow that of the DEPLETHINK study (NCT03468230; poster 993) to permit a comparison between the activity of CYAD-01 and CYAD-02.

CYCLE-1 STUDY

- The Phase 1 CYCLE-1 study evaluates a single infusion of CYAD-02 cells after non-myeloablative pre-conditioning chemotherapy in patients with r/r AML/MDS.
- The pre-conditioning chemotherapy consists of 300 mg/m² cyclophosphamide and 30 mg/m² fludarabine daily for 3 days (CyFlu).
- Dose escalation study with a 3+3 design evaluates three dose levels (DLs) of CYAD-02: 1x10⁷, 3x10⁷ and 1x10⁹ total cells per infusion.
- A consolidation cycle with CYAD-02 given once every two weeks for three infusions without prior pre-conditioning chemotherapy is authorized in the absence of progressive disease after the first CYAD-02 infusion and no detectable CYAD-02 in the peripheral blood.
- Primary endpoint is the occurrence of dose-limiting toxicity (DLT). Key secondary endpoints include additional safety parameters, CYAD-02 cell kinetics, objective responses and duration of responses.

MAIN RESULTS

- As of Oct 22, 2020, 7 patients (3 AML and 5 MDS) have been treated: 3 patients at DL1, 3 patients at DL2, 1 patient at DL3. The patient demographic and key baseline characteristics are outlined in Table 1.
- An encouraging safety profile was observed (Table 2) for all CYAD-02 infusions. One Grade (G) 4 infusion reaction and one G3 cytokine release syndrome (CRS) have been observed, both rapidly controlled with appropriate treatments.
- Clinical activity (Figures 2 and 3):
 - CYAD-1 study: Of the 7 patients enrolled, 4 patients have presented a relevant bone marrow (BM) blast decrease, i.e., anti-leukemic activity (ALA), defined as decrease of at least 50% of the BM blasts. One of these patients, a r/r MDS patient, is presenting a marrow complete remission (mCR) per IWG criteria. Duration seems encouraging as 2 other patients are presenting a stable disease for more than 4 months (4r/m and 6m).
 - DEPLETHINK study: Of the 17 patients enrolled in the study, no objective responses were observed although 1 patient at the DL3 with the OptimAb process did show an ALA.
- Pharmacodynamics of the CYAD-02 cells in the peripheral blood (PB) (Figure 1):
 - CYAD-02 cells can be detected in the PB of patients soon after infusion. Peak concentrations (Cmax) ranged from 163.9 to 9975.1 copies/µg of DNA (median=7256.1) and are observed within two weeks after infusion (median time to Cmax = 8 days, range 7-15).
 - CYAD-02 engraftment as measured by Cmax and persistence of CYAD-02 two weeks after infusion are similar to what has been previously observed for CYAD-01 after CyFlu preconditioning chemotherapy (DEPLETHINK study, poster 993).
- Effect of the preconditioning on lymphocyte count and cytokine release (Figure 4):
 - CyFlu preconditioning induces deep lymphodepletion in AML/MDS patients as based on absolute lymphocyte count (ALC) and white blood cell (WBC) count.
 - CyFlu preconditioning does not induce significant alterations of cytokines, chemokines including hematopoietic cytokines IL-7 and IL-15 in AML/MDS patients.

CONCLUSIONS

- Preliminary clinical activity data showed anti-leukemic activity in 50% of the r/r AML/MDS patients associated with an overall encouraging disease control. One objective mCR has been documented in the single patient enrolled so far at DL3.
- Cell products for the remaining recruited DL3 patients have been successfully produced.
- Initial observations of clinical activity observed in the CYCLE-1 study seems attributable to an increased potency of CYAD-02 given the apparent equivalent levels of cell engraftment seen in the CYCLE-1 and DEPLETHINK studies (similar CyFlu dosing).
- Despite the expected level of lymphodepletion induced by CyFlu preconditioning, there was no evidence of increased levels of hematopoietic cytokines, a key driver of T cell expansion. This could be related to the impact of AML/MDS on bone marrow.
- Favorable safety profile for CYAD-02 observed in the CYCLE-1 Phase I study; to